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SUMMARY: This paper focuses on applying statistical process control techniques to 
vibration-based damage diagnosis.  First, an auto-regressive (AR) model is fit to the 
measured acceleration-time histories from an undamaged structure.  Coefficients of the AR 
model are selected as the damage-sensitive features for the subsequent control chart analysis. 
Finally, the AR coefficients of the models fit to subsequent new data are monitored relative to 
the control limits. A unique aspect of this study is the coupling of various projection 
techniques such as principal component analysis, linear and quadratic discriminant operators 
with the statistical process control in an effort to enhance the discrimination between features 
from the undamaged and damaged structures. This combined statistical procedure is applied 
to vibration test data acquired from a concrete bridge column as the column is progressively 
damaged.  The coupled approach captures a clearer distinction between undamaged and 
damaged vibration responses.  
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INTRODUCTION 

Structural health-monitoring, reviewed in detail in [1], is best studied in the context of a 
statistical pattern recognition paradigm.  This paradigm can be described as a four-part 
process: 1.) Operational evaluation, 2.) Data acquisition & cleansing, 3.) Feature extraction & 
data reduction, and 4.) Statistical model development.  In particular, this paper focuses on 
Parts 3 and 4 of the process. The process is illustrated through application to acceleration-
time history data measured on an undamaged and subsequently damaged concrete columns.  
Note that the primary objective of this study is to identify the existence of damage. The 
localization and quantification of damage are not addressed in this study.   

In this study auto-regressive (AR) models are fit to measured time series.  The coefficients of 
these models are the damage-sensitive features that are subsequently used to discriminate 
between a damaged and undamaged structure.  Several projection techniques such as 
principal component analysis (PCA) and linear/quadratic projections [2] are applied to the 
data acquired in this study in an effort to reduce the dimensionality of the data and enhance 
the discrimination between features from undamaged and damaged structures.  Statistical 
model development is concerned with the implementation of the algorithms that analyze the 
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distribution of extracted features in an effort to determine the damage state of the structure. In 
this study techniques from statistical process control are applied to the selected features to 
investigate the existence of damage in the structure of interest.   

SPATIAL DATA COMPRESSION 

In this study, PCA is used to perform data compression prior to the feature extraction process 
when data from multiple measurement points are available.  This process transforms the time 
series from multiple measurement points into a single time series by forming a linear 
combination of the various measured time histories. Inherent in any data compression process 
is the loss of information.  Principal component analysis is employed in this study to preserve 
as much of relevant information as possible during the dimensionality reduction.  

Consider the response parameter time histories, ui(tj), corresponding to m different 
measurement degrees of freedom and sampled at n time intervals 
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The time histories are first normalized by subtracting their respective mean values, iu , 
defined as. 
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At a given time, tj, a vector of the the normalized response components corresponding to the 
m measurement degrees of freedom is formed as 
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Then, the mm ×  covariance matrix, Ω , among spatial measurement locations summed over 
all time samples is given by 
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The eigenvalues, iλ , and eigenvectors, iv , of the covariance matrix satisfy: 

iii vv λ=Ω  (5) 
Here, an eigenvector iv  is also called a principal component.  To reduce the m-dimensional 
vector ( )tu  into a d-dimensional vector, xv(t), where d <  m, ( )tu  is projected onto the 
eigenvectors corresponding to first d largest eigenvalues:   

( ) [ ] ( )tt d1 uvvx T
v L=  (6) 
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FEATURE EXTRACTION 

In this study the coefficients of an AR model are selected as damage sensitive features.  The 
time series from an individual measurement point, or the spatially-compressed time series 
obtained from PCA, can be used to construct the AR models.  In the AR model the current 
point in a time series is modeled as a linear combination of the previous n points: 
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where y(t) is the time history at time t, φj is an unknown auto-regression coefficient, and e(t) 
is an unobservable random error with zero mean and constant variance. For the application 
reported herein, the time signals are divided into smaller size time windows, and AR 
coefficients are estimated from each time window.  Following this procedure, a large set of 
AR coefficients are obtained for subsequent damage diagnoses.  

DATA COMPRESSION OF FEATURE VECTORS: LINEAR AND QUADRATIC 
PROJECTIONS 

In this study the multi-dimensional feature vectors are projected onto one-dimensional 
subspaces using linear and quadratic projections [3,4], and the statistical discrimination 
procedure is applied to the one-dimensional variable. The specific linear and quadratic 
projections, are derived by considering the Bayesian classification problem.  The 
classification problem consists of determining which class an observation belongs to given a 
discriminant function.  To illustrate this, consider a situation in which there are only two 
classes (classes A and B) and multi-dimensional feature vector x is obtained.  The first task is 
to determine a rule, which can be used to assign the data to one of the two classes. A decision 
rule based on Bayes’ Theorem is shown to minimize the probability of error, which is the 
probability of misclassification of assigning a new feature to class A when, in fact, it belong 
to class B, or vice versa [4].  If the product of the conditional probability and the prior 
probability replaces the corresponding posterior probability and the conditional densities are 
normal distributions, the following quadratic decision rule can be obtained: 
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where Am  and Bm  are the mean vectors of the classes A and B distributions, respectively.  

AΣ  and BΣ  are the covariance matrices of each class.  Now the feature x is assigned to class 
A when ( ) 0D >x .  Otherwise x is assigned to class B.  Note that the prior probabilities P(A)  
and P(B)  are assumed to be identical in Equation (8) for simplicity.  Otherwise the feature x 
is assigned to class A when ( ) ( )P(A)P(B)lnD >x .  In the case where the covariance 
matrices are identical matrices ( =Σ  AΣ = BΣ ), the classification boundary can be further 
simplified to a linear form:  
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Although the Bayesian classifier minimizes the probability of error, the Bayesian classifier 
requires the conditional probability densities for each class to successfully implement such a 
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classification scheme. To overcome this difficulty, the decision rule ( )xD  in Equations (8) 
and (9) can be rewritten in the more general forms.  For a quadratic discriminant function, 

Vxx Qxx     )D( T +=  (10) 
and for a linear discriminant function: 

xFx T )D( =  (11) 
Note that the constant terms in Equations (8) and (9) are omitted in Equations (10) and (11) 
without losing generality.  The decision rule can be also viewed as a projection that maps 
multi-dimensional space x  to a one-dimensional space ( )xD .  We are particularly interested 
in defining a transformed feature ( )xD=τ  such that the means of two classes are as far as 
possible and their variances are the smallest as possible after either quadratic or linear 
projections.  These projections can be sought by maximize the following Fisher criterion [3]: 
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where Am  and Bm  are the means of the projected feature in classes A and B.  Aσ  and Bσ  
are the corresponding standard deviations of the transformed features.  For a linear projection 
in Equation (11), the quantities, Am , Bm , Aσ , and Bσ  linearly depend on F .  Therefore, the 
Fisher criterion can be expressed as a function of F .  Taking derivatives of f with respect to 
F  and setting this quantity equal to zero yields the following linear projection [2]: 
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It is important to mention that the performance of the linear classifier will not be optimal 
unless AΣ  and BΣ  are the same. For the test data studied herein, acceleration data from 
undamaged and damaged classed are observed to have unequal covariance matrices.  Because 
the Bayesian decision boundary is quadratic under the more general circumstance of unequal 
covariance matrices between classes, the quadratic transformation yields the best 
discrimination power. Introducing a new variable iy , which represents the product of two 

ix ’s, Equation (10) can be linearized as [4]:   
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where ijq , iv are the components of Q  and V  respectively.  iy  represents the product of the 

jx ’s  and ia  is the corresponding entry in the Q  matrix.  In addition, n is the order of the AR 
model or the dimension of AR coefficients defined in Equation (7).  Let Y and X denote 
column vectors of iy ’s and jx ’s, respectively.  Now, the following equation analogous to the 

linear case can be solved for Q  and V by introducing a new variables vector TTT ]XY[Z =  
and letting E  and S  be the expected vector and covariance matrix of Z , respectively: 
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Then ia ’s and jv ’s can be rearranged to form the Q  matrix and V  vector.  Note that the 
projection techniques presented here are used for a dimensionality reduction purpose rather 
than for a construction of a discriminant function.  That is, the n-dimensional AR coefficient 
space is projected onto a single scalar space maximizing the mean differences between two 
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classes. Damage diagnosis is conducted on the transformed feature using the statistical 
process control technique described in the following section. 

STATISTICAL MODELING: STATISTICAL PROCESS CONTROL 

Statistical process control (SPC) is a collection of tools useful in process monitoring, and 
improvement. The control chart is the most commonly used one and very suitable for 
automated continuous system monitoring [5].  When the system of interest experiences 
abnormal conditions, the mean and/or variance of the extracted features are expected to 
change.  In this study an X-bar control chart is employed to monitor the changes of the 
selected feature means and to identify samples that are inconsistent with the past data sets. 
Several variations of the control charts can be found in Reference [5].  To monitor the mean 
variation of the features, the features are first arranged in subgroups of size p where ijτ  is the 
extracted feature from previous section and q is the number of subgroups.  The subgroup size 
p is often taken to be 4 or 5 [5].  If p is chosen too large, a drift present in individual subgroup 
mean may be obscured, or averaged-out.  An additional motivation for the using subgroups, 
as opposed to individual observations, is that the distribution of the subgroup mean values 
can be reasonably approximated by a normal distribution as a result of central limit theorem.  
Next, the subgroup mean iX  and standard deviation iS  of the features are computed for each 
subgroup ( qi ,,1 L= ): 

( )iji mean τ=X   and  )(S iji std τ=  (16) 
 

Here, the mean and standard deviation are with respect to p observations in each subgroup.  
Finally, an X-bar control chart is constructed by drawing a centerline (CL) at the subgroup 
mean and two additional horizontal lines corresponding to the upper and lower control limits 
(UCL & LCL) versus subgroup numbers (or with respect to time).  The centerline and two 
control limits are defined as follows:  
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where the calculation of mean is with respect to all subgroups ( qi ,,1L= ).  2αZ  is the 
percentage point of the normal distribution with zero mean and unit variance such that 

][ 2αZzP ≥  = 2α .  The variance 2S  is estimated by averaging the variance iS  of all 

subgroups.  Note that, if iX  can be approximated by a normal distribution due to the central 
limit theorem, the control limits in Equation (17) correspond to a )1(100 α− % confidence 
interval. If the system experienced damage, this would likely be indicated by an unusual 
number of subgroup means outside the control limits; a charted value outside the control 
limits is referred to as an outlier in this paper.  The monitoring of damage occurrence is 
performed by plotting new iX  values relative to along the previous control limits.   

In general, the observation of a large number of outliers does not necessary indicate that the 
structure is damaged but only that system has varied to cause statistically significant changes 
in its vibration signatures.  This variability can be caused by a variety of environmental and 
operational conditions that the system is subject to.  Because the influence of operational and 
environmental factors on the dynamic characteristics of the test structure was minimal for the 
presented laboratory test, the deterioration of the structure was assumed to be the main cause 
of the abnormal changes of the system.   
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APPLICATION TO CONCRETE COLUMNS 

Faculty, students and staff at the University of California, Irvine (UCI) performed quasi-
static, cyclic tests to failure on seismically retrofitted, reinforced-concrete bridge columns.  
Vibration tests were performed on the columns at intermittent stages during the static load 
cycle testing when various amounts of damage had been accumulated in the columns. The 
configuration and dimension of the test column the dimensions are shown in Fig. 1.  Details 
of testing and all test data can be found at http://ext.lanl.gov/projects/damage_id/. 
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Figure 1:  Column dimensions and photo of an actual test structure. 

Feature Extraction and Data Compression 

The applicability of SPC to damage diagnosis problem is demonstrated using individual time 
series from different measurement points. The 8192 point measured time series are first 
divided into 512 16-point subgroups, and a third-order AR model is fit to individual 
subgroups resulting in 512 sets of AR coefficients.  Damage diagnoses using X-bar control 
charts are performed using the first AR coefficient as a feature.  The control limits 
corresponding to a 99% confidence interval are constructed by setting 01.0=α  in Equation 
(17). Next, the advantage of projection techniques is investigated.  Linear and quadratic 
projections are introduced to map multi-dimensional AR coefficient space into a one-
dimensional space in order to maximize the mean differences between the data sets obtained 
from the undamaged and damaged classes.  SPC analyses are then conducted on the 
transformed single scale feature. Finally, PCA is carried out to all response time series for 
spatial dimensionality reduction prior to feature selection and SPC analysis.  That is, all time 
series from 39 response points are projected onto the first principal component of the 

http://ext.lanl.gov/projects/damage_id/
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covariance matrix of the time series.  The subsequent feature selection and SPC analyses are 
performed based on this single time series that is a linear combination of the 39 measured 
time series.   

Statistical Modeling: X-bar Control Chart using the First AR Coefficient  

Figure 1 shows the damage diagnosis results using the first coefficient of the third order AR 
model.  These results here and in all subsequent plots are shown for the undamaged data as 
well as data from the first, second and final (fifth) damage levels.  Time histories from 
measurement point 1 are used for the construction of the control chart.  UCL, LCL, and CL 
denote the upper and lower control limits, and centerline obtained from the time series of the 
undamaged structure.  Note that the extracted feature is standardized prior to the construction 
of the control chart by subtracting the mean and dividing by the standard deviation. After 
establishing the control limits and centerline, features obtained at each damage level are 
plotted relative to the control limits and centerline obtained from the undamaged data.  The 
outliers, which are samples outside the control limits, are marked by “+” sign in all figures. 
Note that the subgroup mean and standard deviation obtained from damage level 0 are used 
to normalize all the subsequent damage levels. 

The diagnosis results using the other AR coefficients are also summarized in Table 1.  For 
this particular example, the third AR coefficient seems to be most indicative of damage, and 
the first coefficient is very insensitive to damage.  For damage levels 0 and 1, the numbers of 
total outliers out of 384 samples are 2 and 1, respectively. Therefore, it is not clear if the 
system experienced any significant damage at damage level 1 based on the analysis of the X-
bar control chart using the individual AR coefficients. 
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Figure 1: X-bar control chart using the first AR coefficient 

Table 1: Outlier numbers of X-bar control chart using different AR coefficients 
 
Damage Level AR 

coefficient 0 1 2 3 4 5 

1α  0/128* 0/128 6/128 6/128 2/128 1/128 

2α  0/128 0/128 6/128 10/128 30/128 23/128 

3α  2/128 1/128 12/128 31/128 77/128 88/128 
Total # of 
outliers 

2/384 
(0.52%) 

1/384 
(0.26%) 

24/384 
(6.25%) 

47/384 
(12.24%) 

109/384 
(28.39%) 

112/384 
(29.17%) 

*1/128 indicates that there is a single outlier out of 128 sample data points. 
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Statistical Modeling: Control Chart Analysis after Linear or Quadratic Projection 

Next, the linear and quadratic projection techniques are incorporated into X-bar control chart. 
To overcome these difficulties with the construction of multiple control charts using 
individual AR coefficients, a single control chart is developed using a one-dimensional 
transformed feature. The three-dimensional AR coefficients are first projected onto one-
dimensional space, and the X-bar chart is constructed based on the transformed feature 

Figure 2 and Figure 3 show the construction of control charts (from time series at Pt.1) and 
the process monitoring after linear and quadratic projections, respectively.  Comparison of 
these figures with Figure 1 clearly reveals the improvement of diagnosis performance. 
Diagnosis results using the other measurement points are conducted and the similar 
performance improvement is observed. However, the diagnosis results are not presented in 
this paper because of space limitation.  As mentioned earlier, the linear projection is not the 
optimal projection in the examples presented here because the orders of two class covariance 
matrices (one from the undamaged case and the other from each damage level) are quite 
different.  In theory, the quadratic projection is the optimal one in a sense of minimizing the 
error of misclassification.  However, no significant performance difference between linear 
and quadratic projections is observed in these examples (see Table 2). 
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Figure 2: X-bar control chart of the coefficients after linear projection 
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Figure 3: X-bar control chart of the coefficients after quadratic projection 
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Principal Component Analysis 

The PCA conducted on the covariance matrix of 39 response time series indicates that the 
responses of 39 measurement points are closely correlated.  The individual and cumulative 
eigenvalues of the covariance matrix are shown in Figure 4. Particularly, the first principal 
component alone holds about 30% of total information and in the following examples, raw 
time series from the 39 measurement points are first projected onto this first principal  
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Figure 4: Principal component analysis of the covariance matrix of 39 response points 
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Figure 5: X-bar control chart of the AR coefficients after principal component analysis of all 
measurement points and linear projection 

Table 2: Outlier numbers of X-bar control chart using linear or quadratic projection 
 

Damage Level Projection 

0 1 2 3 4 5 
Linear 1/128 5/128 24/128 125/128 121/128 127/128 

Quadratic+ 3/128 3/128 34/128 128/128 127/128 128/128 
 

Table 3: Damage diagnosis results after PCA and linear/quadratic projections 
 

Damage Level Projection 
0 1 2 3 4 5 

Linear 1/128 

(0.78%) 
10/128 
(7.81%) 

126/128 
(98.44%) 

127/128 
(99.22%) 

121/128 
(94.53%) 

123/128 
(96.09%) 

Quadratic 1/128 
(0.78%) 

7/128 
(5.47%) 

126/128 
(98.44%) 

127/128 
(99.22%) 

121/128 
(94.53%) 

124/128 
(96.88%) 
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component.  The subsequent feature extraction and X-bar control chart analyses are 
performed in the same fashion as before.  Since the linear and quadratic projections have 
produced similar results, only the damage diagnosis results after PCA and the linear 
projection are displayed in Figure 5.  The results of Table 3 are equivalent to or slightly better 
than those of Table 2 and much better than those of Table 1. 

SUMMARY AND DISCUSSION 

The proposed damage detection approach is used to identify the damage evolution in a 
concrete bridge column based on the data obtained from the vibration tests. AR models are 
constructed using the measured time signals, and damage diagnoses using X-bar control 
charts are performed using the first AR coefficient as damage-sensitive features. Next, the 
advantage of projection techniques is investigated.  Linear and quadratic projections are 
introduced to map the multi-dimensional AR coefficient feature space into a one-dimensional 
feature space in order to maximize the differences in the mean values between the two data 
sets being compared.  The control chart analysis is then conducted on the transformed single 
dimension feature data. Finally, PCA is carried out on all response time series for spatial 
dimensionality reduction prior to feature extraction.  That is, all time series from multiple 
measurement points are projected onto the first principal component of the time series 
covariance matrix, and the subsequent feature selection is performed based on this 
compressed time series data.   

The projection techniques improved the performance of control chart analysis compared to 
the damage diagnosis using the individual AR coefficients. When the projection techniques 
and PCA are combined, the control charts successfully indicated the system response 
anomaly for all damage levels by showing a statistically significant number of outliers 
outside the control limits.  It should be also noted that this study is carried out in an 
unsupervised learning mode.  Although the projection techniques require two separate data 
sets, it is only assumed that there is one data set from the undamaged class and the other data 
set is from an unknown class. Unsupervised learning techniques are very important for civil 
engineering studies because response data from a similar damaged system is rarely available. 
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